Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice.
نویسندگان
چکیده
Ablation of nonmuscle myosin (NM) II-B in mice during embryonic development leads to marked enlargement of the cerebral ventricles and destruction of brain tissue, due to hydrocephalus. We have identified a transient mesh-like structure present at the apical border of cells lining the spinal canal of mice during development. This structure, which only contains the II-B isoform of NM, also contains beta-catenin and N-cadherin, consistent with a role in cell adhesion. Ablation of NM II-B or replacement of NM II-B with decreased amounts of a mutant (R709C), motor-impaired NM II-B in mice results in collapse of the mesh-like structure and loss of cell adhesion. This permits the underlying neuroepithelial cells to invade the spinal canal and obstruct cerebral spinal fluid flow. These defects in the CNS of NM II-B-ablated mice seem to be the cause of hydrocephalus. Interestingly, the mesh-like structure and patency of the spinal canal can be restored by increasing expression of the motor-impaired NM II-B, which also rescues hydrocephalus. However, the mutant isoform cannot completely rescue neuronal cell migration. These studies show that the scaffolding properties of NM II-B play an important role in cell adhesion, thereby preventing hydrocephalus during mouse brain development.
منابع مشابه
Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development.
We report that the alternatively spliced isoforms of nonmuscle myosin heavy chain II-B (NHMC II-B) play distinct roles during mouse brain development. The B1-inserted isoform of NMHC II-B, which contains an insert of 10 amino acids near the ATP-binding region (loop 1) of the myosin heavy chain, is involved in normal migration of facial neurons. In contrast, the B2-inserted isoform, which contai...
متن کاملAblation and mutation of nonmuscle myosin heavy chain II-B results in a defect in cardiac myocyte cytokinesis.
We have identified a novel form of cardiac myocyte enlargement in nonmuscle myosin heavy chain II-B (NMHC II-B) ablated mice, based on a partial failure in cytokinesis. In contrast to most cells, cardiac myocytes lack NMHC II-A, and ablation of NMHC II-B results in a heart with 70% fewer myocytes at embryonic day 14.5 (E14.5) than control mice (B+/B- and B+/B+). In addition, B-/B- cardiac myocy...
متن کاملAblation of Nonmuscle Myosin II-B and II-C Reveals a Role for Nonmuscle Myosin II in Cardiac Myocyte Karyokinesis
Ablation of nonmuscle myosin (NM) II-A or NM II-B results in mouse embryonic lethality. Here, we report the results of ablating NM II-C as well as NM II-C/II-B together in mice. NM II-C ablated mice survive to adulthood and show no obvious defects compared with wild-type littermates. However, ablation of NM II-C in mice expressing only 12% of wild-type amounts of NM II-B results in a marked inc...
متن کاملDistinct and redundant roles of the non-muscle myosin II isoforms and functional domains.
We propose that the in vivo functions of NM II (non-muscle myosin II) can be divided between those that depend on the N-terminal globular motor domain and those less dependent on motor activity but more dependent on the C-terminal domain. The former, being more dependent on the kinetic properties of NM II to translocate actin filaments, are less amenable to substitution by different NM II isofo...
متن کاملGene dosage affects the cardiac and brain phenotype in nonmuscle myosin II-B-depleted mice.
Complete ablation of nonmuscle myosin heavy chain II-B (NMHC-B) in mice resulted in cardiac and brain defects that were lethal during embryonic development or on the day of birth. In this paper, we report on the generation of mice with decreased amounts of NMHC-B. First, we generated B(DeltaI)/B(DeltaI) mice by replacing a neural-specific alternative exon with the PGK-Neo cassette. This resulte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2007